Integrability of Rough Almost Complex Structures
نویسندگان
چکیده
We extend the Newlander-Nirenberg theorem to manifolds with almost complex structures that have somewhat less than Lipschitz regularity. We also discuss the regularity of local holomorphic coordinates in the integrable case, with particular attention to Lipschitz almost complex structures.
منابع مشابه
The Integrability Problem for Lie Equations
The study of pseudogroups and geometric structures on manifolds associated to them was initiated by Sophus Lie and Élie Cartan. In comparing two such structures, Cartan was led to formulate the equivalence problem and solved it in the analytic case using the Cartan-Kâhler theorem (see [2] and [3]). In the early 1950's, Spencer elaborated a program to study structures on manifolds, in particular...
متن کاملAbout the geometry of almost para-quaternionic manifolds
We provide a general criteria for the integrability of the almost para-quaternionic structure of an almost para-quaternionic manifold (M,P) of dimension 4m ≥ 8 in terms of the integrability of two or three sections of the defining rank three vector bundle P. We relate it with the integrability of the canonical almost complex structure of the twistor space and with the integrability of the canon...
متن کاملOn the Geometry of Almost Complex 6-manifolds
This article discusses some basic geometry of almost complex 6manifolds. A 2-parameter family of intrinsic first-order functionals on almost complex structures on 6-manifolds is introduced and their Euler-Lagrange equations are computed. A natural generalization of holomorphic bundles over complex manifolds to the almost complex case is introduced. The general almost complex manifold will not a...
متن کاملRemarks on the Geometry of Almost Complex 6-manifolds
This article is mostly a writeup of two talks, the first [3] given in the Besse Seminar at the École Polytechnique in 1998 and the second [4] given at the 2000 International Congress on Differential Geometry in memory of Alfred Gray in Bilbao, Spain. It begins with a discussion of basic geometry of almost complex 6-manifolds. In particular, I define a 2-parameter family of intrinsic first-order...
متن کاملComplex Structures on Principal Bundles
Holomorphic principal Gbundles over a complex manifold M can be studied using non-abelian cohomology groups H(M,G). On the other hand, if M = Σ is a closed Riemann surface, there is a correspondence between holomorphic principal G-bundles over Σ and coadjoint orbits in the dual of a central extension of the Lie algebra C∞(Σ, g). We review these results and provide the details of an integrabilit...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008